
2014-06-20 mindwind

Pragmatic REST

REST is an architectural style, not a strict standard.

The success of an API design is measured by how
quickly developers can get up to speed and start
enjoying using your API.

Design communicates how something will be used.

1. Nouns are good, verbs are bad

Keep base URL simple and
intuitive

/dogs /dogs/1234

Keep verbs out of base URL

2. Use HTTP verbs to operate on the
collections and elements

3. plural nouns and concrete names

It is more intuitive to use plural nouns.

Avoid a mixed model in which you use singular for
some resources and plural for others.

Concrete names are better than abstract.

/dogs (concrete) /animals (abstract)

4. Simplify association - sweep complexity
under the ‘?’

To get all the dogs belonging to a specific owner.

GET /owners/5678/dogs (bad)

GET /dogs?owner=5678 (good)

5. Handling errors

5. Handling errors

Use HTTP Status Code.

success 200 - OK

client error 400 - Bad Request

server error 500 - Internal Server Error

Make message returned as verbose as possible.

6. Tips for versioning

Never release an API without a version and make the
version mandatory.

Twilio /2014-04-01/Accounts/ (Confusing)

Salesforce /services/v20.0/sobjects/Account (change frequently)

Facebook ?v=1.0 (optional not mandatory)

recommend /v1/dogs /v2/dogs

7. pagination and partial response

Use limit and offset to make it familiar to developer.

/dogs?limit=25&offset=50

Support partial response by adding optional fields in a
comma delimited list.

/dogs?fields=name,color,location

8. What about responses that don’t involve
resources?

Use verbs not nouns.

/convert?from=EUR&to=CNY&amount=1000

Make it clear in API documentation that these “non-
resource” scenarios are different.

9. Supporting multiple formats

Use JSON as default format.

It is friendly for javascript and JSON is the closet thing we have to
universal language.

/dogs.json /dogs/1234.json

10. What about attribute names?
!

Follow javascript convention for naming attributes.

CamelCase

11. Tips for search
!

Simple search could be modeled as a resourceful API

/dogs?q=red

Global search follow the Google model

/search?q=red+fluffy

12. Consolidate API requests in one
subdomain

!

Consolidate all API requests under one subdomain

api.yourdomain.com

only one is cleaner, easier and more intuitive for developers.

http://api.yourdomain.com

13. Complement with an SDK
!
!

Simplify integration effort required to work with your
API.

An SDK can help reduce bad or inefficient code.

